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Abstract

This project extends an Indirect Visual Odometry codebase to incorporate Simultaneous Localization and
Mapping (SLAM) by implementing additional data structures necessary for effective map management. These
data structures enable the representation of spatial relationships between keyframes by connecting those that share
common visual features, allowing for efficient optimization through Bundle Adjustment on just a targeted subset of
all the landmarks and keyframes. Our approach was able to significantly increase the accuracy of the localization
with only a minor increase in the computational cost of the algorithm.

I. INTRODUCTION
A. Visual Odometry Limitations

Visual Odometry (VO) estimates a robot’s or camera’s motion by analyzing sequential images, retaining only a
queue of the most recent keyframes and discarding older ones.
This approach is computationally efficient because it allows Bundle Adjustment to be performed only on a limited
number of keyframes and landmarks. However, it has some inherent limitations. Over time, small errors in motion
estimation can accumulate, resulting in cumulative drift. This drift causes inaccuracies in positioning, especially in
long trajectories. Additionally, as older keyframes are discarded, all past information about a location is lost after
a time. This results in treating a location visited in the past in the exact same way as locations that are completely
new. To be able to exploit the information about past locations, a trivial approach would be not to discard any
keyframe, but this approach quickly becomes computationally infeasible.

B. Our Implementation Overview

Our approach succeeds in finding a balance between these two extreme approaches, being able to exploit past
data at an acceptable computational price.
Once a new keyframe is added, new landmarks are added to the map. Cameras that do not have many landmarks in
common with the new keyframe will not have any substantial improvement from bundle adjustment. We exploited
this fact. Bundle Adjustment is run only on the subset of the total keyframes that have a minimum number of
landmarks in common with the new keyframe and on the landmarks visible from these keyframes. To implement
this approach, some additional data structures had to be implemented. Section II will have an extensive description
of it.

Fig. 1 illustrates trajectory estimations using both Visual Odometry and our SLAM implementation on the Euroc
V1 Easy dataset [1]. Unlike VO, our approach retains past keyframes (depicted as black cameras), but bundle
adjustment is applied only on a small localized subset of cameras (shown as green and blue cameras). Fig. 2 shows
the plots of error difference between the ground truth and estimated trajectories for these two methods.

II. DATA STRUCTURES
A. Global Map

The set of all the landmarks detected.


https://github.com/AlboAlby00/Slam

(a) Using the Visual Odometry codebase. Past keyframes are discarded and cannot be used if
we revisit a past location.

(b) Using our SLAM codebase. No keyframe is discarded. Bundle adjustment is run on the blue
and green cameras and black landmarks and is not run on black cameras and gray landmarks.

Fig. 1: Comparison of trajectory estimation on Euroc V1 Easy Dataset [1] using different approaches. Ground truth
trajectory is visualized in yellow, and the estimated trajectory is in red.

B. Covisibility Graph

The covisibility graph is a data structure used to store information about the different keyframes that share
common landmarks. In this graph, keyframes are represented as nodes, and an edge is created between two nodes
if the corresponding keyframes have a minimum number of landmarks in common.
Each time a new keyframe is added, a corresponding node is added to the covisibility graph. The global map is
then projected on this new keyframe. By iterating through all existing keyframes, the necessary edges are added
to update the covisibility graph accordingly. Fig. 3 shows an illustration of a covisibility graph, as depicted in
ORB-SLAM2 [2]
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(b) Using our SLAM implementation with local optimization.

Fig. 2: Error between the ground truth and estimated trajectory on the Euroc V1 Easy dataset [1]

C. Local Map

Each keyframe is associated with a local map. The local map for a keyframe includes all the landmarks visible
in that keyframe, as well as the landmarks visible in all keyframes connected to it within the covisibility graph.
The local map of the most recent keyframe is used to localize all frames that are not keyframes. This approach is
more efficient than projecting the entire global map, as it reduces computation time while maintaining localization
accuracy.

Unlike in Visual Odometry, where past keyframes are discarded, using the local map allows for the utilization of
landmarks that were created in earlier frames. This capability helps mitigate the drifting problem, particularly when



Fig. 3: Covisibility graph visualization taken from the ORB-SLAM?2 paper [2]

the camera revisits previously explored locations.

III. LoCAL BUNDLE ADJUSTMENT

As mentioned previously, running the Bundle Adjustment (BA) on all keyframes is computationally infeasible.
Instead, each time a new keyframe is added, we run only a local bundle adjustment. Local Bundle Adjustment
uses only the keyframes that have a minimum number of landmarks in common ( and so they are connected in
the covisibility graph ) and it uses only the landmarks in the local map. It makes sense to do this since bundle
adjustment will have a big impact only on the cameras that are facing the newly created landmarks, and will have
a small or no influence on all the other keyframes.

Local Bundle Adjustment is handled as a separate task from the tracking process and is therefore executed on a
dedicated thread to ensure efficient computation and minimize interference with the real-time tracking.

IV. KEYFRAME MANAGEMENT

The ORB-SLAM paper [3] attributes much of its robustness to the ”survival of the fittest” strategy employed in
keyframe management. This involves inserting keyframes as quickly as possible and later removing unnecessary
ones to minimize computational overhead. We’ve implemented a similar strategy to evaluate its impact on the
performance of our SLAM system.

A. KeyFrame Insertion Strategies

We evaluated two additional keyframe insertion criteria alongside the existing strategy used in the Odometry
codebase. When any of these three criteria are applicable, a new keyframe is added to the local map:
1) Minimum number of Feature correspondences
When the number of inlier feature matches of the current frame to the landmarks in the local map is below
a (hyperparameter) threshold, insert a new keyframe. This is adapted from the existing strategy used in
Odometry.



2) Maximum number of non-Keyframes
This imposes a limit on the maximum number of non-keyframes that can exist between two keyframes. Insert
a new keyframe if the last keyframe was inserted more than = frames ago.

3) Mean Square Optical Flow
If the field of view changes significantly (based on a threshold) from the previous frame to the current
image, insert a new keyframe. This is measured using the mean square optical flow, as proposed in the DSO
method [4]. This is given by:
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where 7 is the number of feature points tracked by both images, p; is the position of the i feature in the
previous frame, and p) is the corresponding position of the ith feature in the current frame.

B. Culling Redundant Keyframes

Culling redundant keyframes is a necessary step in ensuring the local map does not grow unbounded, and
managing the complexity of the local bundle adjustment. This involves discarding keyframes that do not contribute
significantly to the map’s accuracy. If the size of the local map is larger than m (a hyperparameter) keyframes,
similar to ORB-SLAM [3], we discard all such keyframes in the local map where 90% or more of their keypoints
were observed in at least k£ (a hyperparameter) other keyframes within the local map. These discarded keyframes
are also removed from each landmark’s observation and from all covisibility graphs. If all visible observations of
a landmark were removed during this process, such landmarks are also removed from the overall global set of
landmarks.

V. OTHER FEATURES IMPLEMENTED
A. Uniform Feature Extraction

The default feature extraction method extracts most features in few specific parts of the image, ignoring others.
In order to obtain a more uniform distribution of feature locations, we divide the image in a grid like it is done
in the ORB-SLAM paper [3], and every cell of the grid is treated independently in the feature extraction process.
Fig. 4a shows the features extracted from an image using default (non-uniform) feature matching, and Fig. 4b
shows the features extracted from each grid of the same image using uniform feature matching.

When evaluating this feature, we found that the mean absolute translational RMSE value was similar to that obtained
without uniform feature extraction but with a noticeably higher standard deviation.

B. Dynamic Matching Radius

In the Visual Odometry codebase, in order to localize every new frame, the new frame pose is initialized to the
old frame pose, features are extracted and landmarks are projected to the new frame. The frame pose is obtained
using the matches between extracted features and the projected landmarks.

To match a projected landmark to the detected features, only the features in a circular area of constant radius around
the projected landmark are considered as candidates for matching. This approach is obviously less computationally
expensive compared to brute-force matching with all extracted features, but it can lead to failure in case of a
too-aggressive camera movement since the extracted feature relative to the projected landmark would be outside of
the circular area.

We substituted the constant matching radius with a dynamic radius calculated using the following formula.

radius = mean_optical_flow x constant + minimum_radius

This causes the radius to increase when the movement is aggressive and decrease when the movement is slow.
Despite the localization estimate still being not entirely stable, the tracking failures were substantially decreased
on the Euroc dataset "Machine Hall 03 Medium” [1], where the images are recorded using a drone performing
aggressive movements. Fig. 5a shows tracking failures on the "Machine Hall 03 Medium” dataset when using a
constant matching radius, and Fig. 5b shows the same tracking while using a dynamic matching radius, with no
tracking failures or discontinuities.



(b) Uniform feature extractions

Fig. 4: Comparison of feature extraction methods

VI. OBSERVATIONS AND RESULTS

Once all frames have been processed by our SLAM system and the bundle adjustments are complete, we output
the final optimized camera poses for each processed frame to a . csv file. We then evaluate the Absolute Trajectory
Error (ATE) by comparing the ground truth trajectory with our estimated trajectory. The script used for computing
the ATE has been adapted from the evaluation script provided in the SVO codebase [5].



(a) Using a constant matching radius. It is visible that shortly after the start of the video stream,
tracking fails, causing a sudden discontinuity in the estimated trajectory.

(b) Using dynamic matching radius. In this case, at the start of the video stream, no
discontinuities happened.

Fig. 5: SLAM trajectory tracking on the "Machine Hall 03 Medium” dataset [1] using different feature matching
radius techniques.



A. Keyframe Management

After conducting multiple runs with each keyframe insertion strategy, we observed that neither of the two
newly implemented strategies — maximum number of non-keyframes and mean square optical flow — produced
statistically significant improvements in the performance of the SLAM system. The previously implemented strategy
based on the minimum number of feature correspondences performed effectively across different scenarios. Since
the dataset(s) that we mainly tested on do not contain any sharp turns or strong rotational movements, we did not
benefit much from the mean square optical flow keyframe insertion criteria.

Culling redundant keyframes is designed to limit the complexity of local bundle adjustment, with the expectation
of a slight trade-off in accuracy. To evaluate the impact of this approach on SLAM system performance, we ran
Local Bundle Adjustment on the same (main) thread instead of running it in parallel on a different thread. Table I
presents the results from five such runs on the Euroc V1_01_easy sequence, comparing the run time (in seconds)
and ATE-RMSE (in meters), with and without redundant keyframe culling. '

Run Without KF Culling With redundant KF culling
time taken (in s) | ATE-RMSE (in m) | time taken (in s) | ATE-RMSE (in m)

1 480.016 0.099780 289.923 0.092906

2 499.199 0.097786 307.448 0.088909

3 531.378 0.106960 300.975 0.092961

4 372.000 0.097503 305.773 0.091895

5 364.291 0.108865 285.211 0.091664

TABLE I: Results of 5 runs on Euroc V1_01_easy dataset with and without Redundant Keyframe Culling.

Statistical analysis of the above results, as shown in Table II, suggests that there is strong evidence that culling
redundant keyframes is both time efficient and also leads to a more accurate localization.

Metric t-statistic | p-value

Time 4.584 0.0102

ATE-RMSE 4.777 0.0088

TABLE II: Statistical Analysis of Runtime and ATE-RMSE with and without Keyframe Culling

It is also crucial to acknowledge that these results are highly sensitive to the various hyperparameters used

in keyframe insertion and culling. For the experiments described above, the hyperparameter values used were
x = 20, m = 20, k = 3. That is, if the last keyframe was added more than 20 frames ago, a new keyframe is added
and if the size of the local map is > 20 keyframes, we cull redundant keyframes where > 90% of keypoints were
observed in at least 3 other keyframes in the local map.
A significant challenge encountered during these experiments was that overly aggressive addition or culling of
keyframes sometimes led to tracking failures. These failures were due to the disproportionate influence of certain
keyframes or insufficient data. To maintain the integrity of the reported results, we excluded such outlier data from
the final outcomes to minimize noise and ensure more accurate performance evaluation.

B. Local Bundle Adjustment
As said previously, the Local Bundle Adjustment improved the localization quality. Here we compared the

Odometry codebase and our SLAM implementation that resulted in the best performance. We didn’t cull any

"*Note: In the Euroc V1_01_easy dataset, the drone remains stationary for the first approximately 100 frames. To prevent multiple local
Bundle Adjustment runs and repetitive keyframe insertion and culling during this period, we disabled both local bundle adjustment and
keyframe culling for the first approximately 100 frames in this specific experiment.



keyframe, we used the default keyframe selection strategy and we didn’t use the uniform feature extraction.

We evaluated the algorithms on the "Euroc MAV Vicon Room 2” dataset [1] using the Absolute Translational Root
Mean Squared Error as a metric. Both codebases are non-deterministic due to multithreading and due to RANSAC
algorithm, so multiple runs are required to compare them. Table III shows the results of 10 such runs, and Fig. 6
shows the confidence levels and margin of error from these runs.

Run | Odometry ATE-RMSE (m) | SLAM ATE-RMSE (m)
1 0.127268 0.105565
2 0.107698 0.106949
3 0.139505 0.109412
4 0.132889 0.101339
5 0.101372 0.104475
6 0.134385 0.107137
7 0.113120 0.101770
8 0.126611 0.102170
9 0.125374 0.104074
10 0.115301 0.099738

TABLE III: Results of 10 runs on the Eurco MAV Vicon Room 2 dataset using Odometry and our SLAM approach.

VII. CONCLUSION

In this project, we successfully extended our Indirect Visual Odometry codebase to incorporate a few significant
SLAM capabilities by implementing critical data structures for map management. While Visual Odometry discards
older keyframes and recovers the path incrementally to focus on the local consistency of the trajectory, information
that can be gained from previously processed keyframes and visited landmarks, which can contribute to the global
map consistency, is permanently lost. By building a covisibility graph, we enabled the system to focus on the local
trajectory consistency, similar to Visual Odometry, and perform bundle adjustment on just the local map, enhancing
the efficiency, while also retaining the set of older keyframes and landmarks for future referencing.

Throughout the project, we implemented and tested several key components:

D

2)

3)

4)

Local Map and Local Bundle Adjustment: These were crucial for improving the accuracy of the SLAM
system. By focusing on a local map, we were able to limit the scope of computationally expensive operations,
striking a balance between precision and performance.

Keyframe Insertion Strategies: We explored different strategies for inserting keyframes, which is vital for
maintaining an up-to-date and accurate map. Our results indicated that while different strategies have varying
impacts, the initial approach used in VO proved robust across various scenarios.

Culling Redundant Keyframes: We implemented a strategy for removing redundant keyframes, which helped
to manage the complexity of local bundle adjustment. This culling process provided both a slight speed
advantage and a positive impact on overall accuracy, in most scenarios.

Feature Matching: We introduced a dynamic matching radius that adjusts based on the mean optical flow,
which helped mitigate tracking failures due to aggressive camera movements. We also implemented and
tested a uniform feature extraction technique by dividing the image into equal grids to ensure a more even
distribution of features. However, this did not substantially change the ATE-RMSE results.

The culmination of these efforts resulted in a SLAM system that significantly improved the accuracy of localization
with only a minor increase in computational costs.



Confidence Level Margin of Error Error Bar

68.3%, S 0.1224 +0.00393 (+3.21%)
90%, 1.645s, 0.1224 +0.00647 (+5.29%)
95%, 1.960s;, 0.1224 +0.00771 (+6.30%)

999%, 2.576s; 0.1224 +0.0101 (+8.28%)

99.9%, 3.291s; 0.1224 +0.0129 (+10.58%)
99.99%, 3.891s;  [0.1224 +0.0153 (+12.50%)
99.999%, 4.417s; (0.1224 +0.0174 (£14.19%)
99.9999%, 4.892s;(0.1224 +0.0192 (+15.72%)

(a) Margin of error table calculated using the Odometry RMSE
Confidence Level Margin of Error Error Bar
68.3%, 55 0.1043 £0.000963 (+0.92%)

90%, 1.645s; 0.1043 +0.00158 (+1.52%)
95%, 1.960s; 0.1043 +0.00189 (+1.81%)

99%, 2.576s; 0.1043 +0.00248 (+2.38%)

99.9%, 3.291s; 0.1043 +0.00317 (£3.04%)
99.99%, 3.891s; |0.1043 +0.00375 (+3.59%)
99.999%, 4.417s; (0.1043 +0.00425 (+4.08%)
99.9999%, 4.892s5(0.1043 +0.00471 (+4.52%)

(b) Margin of error table calculated using the SLAM RMSE

Fig. 6: Comparison of margin of error tables for Odometry and SLAM
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