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Abstract—In this project, we gain hands-on experience for
working with unmanned area vehicles (UAVs) by building and
implementing the infrastructure and software for a Crazyflie. We
operate in the realm of a landing scenario without an external
tracking system for getting an estimate of the quadcopter state.
More specifically, the state of the drone is solely estimated from
the IMU and RGB data collected on-board of the UAV using
ORBSLAM3. In addition to addressing real-world deployment,
we experiment with reinforcement learning (RL) based and
model-based control algorithms. In particular, we experiment
with a trajectory following RL policy from drone racing and
implement model-predictive control using CASADI. To guide
the control algorithms and train the RL policy, we randomly
generate feasible time-continuous trajectories utilizing minimum-
snap polynomial trajectory generation. This letter documents the
implementation details and our findings.

Index Terms—Unmanned Aerial Vehicles, State Estimation,
Trajectory Planning, Reinforcement Learning, Model Predictive
Control, Vision-based Navigation, Simulation and Real-world
Deployment

I. INTRODUCTION

Small drones, or also unmanned aerial vehicles (UAVs), are
predicted to have wide socio-economic impact once the legal
roadblock is lifted [14]. They can be used in a wide array of
applications such as for security and surveillance [20], aiding
in rescue operations [2], or delivery and logistic [18]. In this
project, we work hands-on with one of such small UAVs,
namely Crazyflie (see fig. 1), and has two main focuses. First,
we implement a full pipeline from vision down to control
using ROS2 [19] without depending on an external position
tracking system. For our second focus, we experiment with
reinforcement learning (RL) based control approaches from
drone racing [25], which we implement using an open-source
simulator [24] that connects pybullet physics simulation
[9] with Gymnasium [29] and stable-baselines [27], and
Bitcraze’s Crazyflie firmware [4].

The objective of this project evolves around the application
of landing, which led to design decisions such as placing the
onboard camera on the bottom of the UAV or in designing
test suites for our RL based control agent. The scope of
this project is not to implement a state-of-the-art landing
software, but to gain hands-on experience with all the
components involved, connect hardware pieces including
their interconnectivity onto the plain Crazyflie which did not
have a camera on-board in its initial state, understand the

Fig. 1: Our Crazyflie.

signficance of the encountered problems when moving from
the simulation to the real-world, and to follow individual
interests in specific algorithms.

This report is structured as follows. Section II provides
an overview over the implementation details. The subsequent
sections dive into individual focuses, including state estimation
in section III, trajectory planning in section IV, model predic-
tive controller (MPC) in section V, and RL in section VI. In
section VIII, a conclusion of the project is given.

II. IMPLEMENTATION

We operate in three environments, i.e. two simulation envi-
ronments and real-life. We use Webots [22] and its integration
with ROS2 and gym-pybullets-drones [24] for the RL
experiments because both environments already provide built-
in integration of the Crazyflie. The software written for Webots
is the same software that we also use for the real-life scenario.

A. ROS2 Software

Figure 2 gives an overview of our ROS2 software. It is
structured in three components, detection and state estimation,
trajectory planning, and control. The pipeline takes in data
collected on the drone as input, i.e. data from the internal
measurement unit (IMU) and RGB camera data. It outputs
control commands, which are in turn sent to the drone. On
the Crazyflie, we mount an ESP32-camera [13], from where



the camera data is streamed. During simulation, the interfaces
to the real drone are replaced by interfaces to Webots.

1) ROS2 Design: Our software entails 6 packages,
teleop, ros2_driver, localization, trajectory,
detectors, and controllers (each with a
’crazyflie_’ prefix). An additional package defines
custom messages and another package defines global launch
files. Each package features spawning ROS2 nodes and
implements communication via standard ROS2 primitives, i.e.
topics, services and actions. The code is provided on github1.

a) Teleoperation: The teleop package implements the
interface to external controllers, and publishes converted sig-
nals to other ROS2 topics. We implement the interface to a Du-
alshock PS3/PS4 controller [28], and convert the I/O signals to
attitude commands. The interface allowed for straightforward
debugging of other components.

b) Control Interface: The ros2_driver package im-
plements the interface to the Crazyflie and Webots, i.e. sending
motor-level pulse width modulation (PWM) signals or attitude
commands. The interface to the Crazyflie is implemented using
cflib2.

c) Localization: The localization package is re-
sponsible for state estimation, which is further detailed in
section III.

d) Detection: We detect landing targets using AprilTag
[23]. The interface is implemented in detection, which
publishes the outputs of the AprilTag software to a ROS2
topic. The AprilTags are also integrated into Webots, enabling
debugging with AprilTags in the simulation.

e) Trajectory Planning: Converting the current state and
target location to a feasible trajectory is implemented in
the trajectory package. More details can be found in
section IV. Note that within the scope of the project, this
component was not used because other components were
deemed to be more significant to implement a minimum
viable product (MVP). Especially a stable state estimation
and video stream are crucial to implement simple hovering
or waypoint tasks, which do not necessitate sophisticated
trajectory planning. For instance, for the latter task, trajectory
planning reduces to specifying a single target waypoint, which
can be done without a dedicated package.

f) Control: The controllers package implements
PID control in C++. We opted for a two-stage approach, where
one stage converts attitude to low-level PWM commands, and
the other stage converts position to attitude commands. More
about this is in appendix D.

B. Hardware Tasks

The project involved working closely with the hardware and
this section provides details about the tasks that came with it.

1) Hardware Build Versions: In the initial state, we re-
ceived a disassembled Crazyflie 2.1 and a plain standalone
ESP32 camera. Assembling the Crazyflie itself is straightfor-
ward but there was no out-of-the-box solution for mounting

1https://github.com/AlboAlby00/CrazyflieControllers/
2https://github.com/bitcraze/crazyflie-lib-python
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Fig. 2: Overview of our ROS2 software.

the camera. The first version with the ESP32 camera on-
board involved soldering pins of the camera together with
pins of the Crazyflie, which was done by the supervisor of
the project. This solution, however, posed the issue that the
propeller motors and the camera were connected to the same
battery. Due to insufficient power supply, this resulted in a
shutdown of the camera stream once the motors were turned
on. We believe that the cause for this behaviour is that the
radio module on-board is shutdown once the power-supply
falls below a threshold due to a security mechanism. As a
solution, we added a separate battery onto the drone. However,
the second battery increased the weight of the UAV to a degree
where the motors were too weak to lift the Crazyflie. To
counteract too weak motors, we upgraded the drone to stronger
motors, which, however, significantly reduced the flight time
to about one to two minutes. The final build version is shown
in fig. 1 with the camera facing downwards.

2) Improving the Video Stream: Since the state estimation
implementation we adopted is solely based on the RGB and
IMU data from the drone (see section III), a stable video
stream presents a foundational component of our software.
However, we found that the video stream via WiFi was
very unstable and disrupted frequently. A description of the
approached solution using packet injection can be found in
appendix C. A deep dive into open-source code for this
approach revealed that this task is out of the scope of this
project, and left up to future work.

C. Pybullet Simulation

The simulation environment gym-pybullet-drones
[24] significantly eased experimentation because it sped up
simulation speed from 2× in Webots to 20×. We extended
the simulation by implementing additional features. In partic-
ular, attitude-level control in the simulation was implemented
since it allows for designing the RL agent to output attitude
commands instead of low-level motor commands, which is
shown to improve RL based control policies [16]. Further-
more, minimum-snap polynomial trajectory generation from
section IV written in C++ is integrated by implementing
an interface to python via pybind11. The code is made
available on github3.

3https://github.com/danielbinschmid/RL-pybullets-cf

https://github.com/AlboAlby00/CrazyflieControllers/
https://github.com/bitcraze/crazyflie-lib-python
https://github.com/danielbinschmid/RL-pybullets-cf


D. Open Problems

The encountered issues prevented us from finalising our
ROS2 software. The key restriction is the unstable state
estimation combined with the unstable video stream, plus the
issues of our improvised hardware build solution explained in
section II-B1. Implementing a simple position control requires
a stable estimate of the own position in the world coordinate
frame. Without a stable estimate, translating high level position
commands from a reference trajectory in the world coordinate
system to attitude commands in the bodyframe coordinate
system, is ill-posed. While AprilTag gives directions to a
target location in the bodyframe coordinate system, it requires
a stable video stream, which was not given. In addition,
preparing the UAV for every planned flight introduced signif-
icant overhead due to battery charging and camera mounting
preparation times. On average, we prepared our drone for 20
minutes for one minute flight time.

III. STATE ESTIMATION

The whole state estimation part of the project was developed
in simulation using Webots, on Pybullet we used directly the
ground truth provided by the simulator. The state estimation
part using only RGB data is also working in the real world, but
the stability is impacted by the bad video stream. For the task
of estimating the state of the robot, the only data available
was the angular velocity, linear acceleration and orientation
obtained from the IMU inside the drone, and RGB data from
an ESP32 camera. After a careful review of the possible
algorithms to use, we opted for ORBSLAM3. ORBSLAM3
is a indirect visual SLAM algorithm that can be used with
monocular, stereo or RGBD cameras. In the monocular setup
it extracts features from two suitable frames, computes the
correspondences and project them in 3D by triangulation. 2D-
3D correspondences from following frames and the 3D map
are then used to estimate the translation and rotation from the
current frame to the map frame, and 2D features not already
in the 3D map are projected and added to it. Monocular Visual
SLAM is not able to estimate the true scale of the translation,
so the final trajectory is correct up to a constant scalar value
that is not possible to obtain only using RGB data. Using
depth (that we don’t have) or inertial data (that we have),
it is theoretically possible to estimate correct translations.
ORBSLAM3 provides also a visual inertial monocular mode,
but the stability was substantially worse compared to the
monocular mode both in simulation and in the real world, so
for integrating inertial data, the approach used was filtering the
Visual Odometry from ORBSLAM and the IMU data using
an extended kalman filter (EKF). We used the ROS2 package
robot localization that contains an already implemented EKF.
The filtered odometry was less noisy compared to the ORB-
SLAM3 odometry, and the scale error, although still important
on the z axis, was reduced. In addition to this, using an EKF
allowed us to have estimation not only of the position and
orientation, but also of the linear and angular velocity, and of
the linear acceleration.

Fig. 3: Comparison between the RGB only odometry (blue),
the EKF filtered odometry (red) and the ground truth (green)
on the xy plane. The scale error is strongly reduced

Fig. 4: Comparison between the rgb only odometry (blue), the
ekf filtered odometry (purple) and the ground truth (green) on
the z. The scale error is slightly reduced.

IV. TRAJECTORY PLANNING

In the domain of autonomous quadcopter navigation, the
ability to efficiently generate and optimize trajectories is the
foundation for ensuring smooth, safe, and efficient flight. This
task comes with inherent complexities because the 12-degrees
of freedom (DOF) quadcopter can not move in arbitrary speed
along arbitrary sharp curves. Accounting for the quadcopter’s
dynamics naturally requires an explicit formulation of an
optimization objective that integrates the dynamics. However,
differential flatness eases the integration of the dynamics into
trajectory planning. In more particular, the principle implies,
that the quadcopter can follow any smooth trajectory in a
carefully chosen flat output space under the constraints of
soundly bounded derivatives [21]. For a detailed explanation
of differential flatness refer to appendix B. More formally, the
flat outputs are defined as

σ = [x, y, z, ψ]T (1)

where r = [x, y, z]T are coordinates of the center of mass of
the quadcopter in the real world coordinate system, and ψ is
the yaw angle. The trajectory is now defined in the space of
flat outputs:

σ(t) : [t0, tm]→ R3 × SO(2) (2)

where t0 is the start and is the tm is the end time, and SO(2)
refers to the special orthogonal group of degree 2, i.e. the space
of all possible rotations around a point in a two-dimensional
plane. In this project, we deploy polynomial minimum jerk/
snap generation from [31] to generate smooth trajectories σ(t)



in the flat output space in an fast and efficient manner using
[31] and their open-source implementation4.

A. Minimum Snap/ Jerk Trajectory Generation

This section closely follows the notation of [31] and for-
malises the used method. Since the spatial dimensions can
be decoupled for minimum snap/ jerk polynomial trajectory
generation [6] among the four dimensions of σ, we only
need to formulate the polynomials and cost functions in
one dimension. Define the (N + 1)-order M -piece spline
(p1, . . . , pM ) where every spline pi, i ∈ [M ] is a N -degree
polynomial [31]:

pi : [0, Ti]→ R : t 7→ cTi β(t) (3)

where T := (T1, . . . , TM )T ∈ RM is the vector of target
timestamps for each piece, ci ∈ RN+1 are the coefficients of
pi, and β(t) := (1, t, t2, . . . , tN )T is the natural basis. We get

p : [0, τM ]→ R : t 7→ pi(t− τi−1), t ∈ [τi−1, τ i] (4)

for the entire spline where τi :=
∑i
j=1 Tj , and c =

(cT1 , . . . , c
T
M ) as the full coefficient vector of p. Define s = 3

for jerk, and s = 4 for snap minimization. We set N = 2s−1
as optimal degree [30]. The trajectory minimisation problem
can now be formulated as follows

min
c,T

∫ τM

0

p(s)(t)2dt (5)

s.t. p(j)(0) = d0,j , 0 ≤ j < s (Start derivatives)

p(j)(τM ) = dM,j , 0 ≤ j < s (End derivatives)
p(τi) = qi, 0 ≤ i < M (Position constraints)

where d0 := (d0,0, . . . , d0,s−1)
T and dM :=

(dM,0, . . . , dM,s−1)
T are initial and final derivatives,

respectively, and q := (q0, . . . , qM−1) are the target
waypoints. Note that the minimisation problem takes
d0, dM , q and T as input, and yields the time-continuous
smooth trajectory σ(t). For landing, dM can be set to
a zero vector to ensure safe landing. The vector d0 is
dependent on the starting position of the drone, hence a
zero vector if the drone starts from a resting position. The
target waypoints q need to be obtained through a preceding
path planning algorithm such as A∗ or RRT∗. Also, observe
that T defines the timing constraints, and implicitly decides
for the aggressiveness of the generated trajectory. To ensure
feasibility, velocity and acceleration constraints can be
additionally integrated into eq. (5). While there exist a closed-
form solution to eq. (5) [6], its computation is inefficient due
to the numerical computation of a matrix inverse [31]. We
adopt the linear complexity algorithm proposed by Wang et
al. [31] which does not necessitate numerically computing
the matrix inverse.

4https://github.com/ZJU-FAST-Lab/large scale traj optimizer

Algorithm 1 Random Polynomial Trajectory Generation

procedure SAMPLEDIRECTION(σ2
deg ∈ [0, 360])

σ2
rad ← DEGREESTORADIANS(σ2

deg)
θrad ← N (0, σ2

rad) ▷ Sample zenithal angle
ϕrad ← U [0, 2π] ▷ Sample azimuthal angle
x← sin(θrad) · cos(ϕrad)
y ← sin(θrad) · sin(ϕrad)
z ← cos(θrad)
return (x, y, z)T

end procedure
procedure GENTRAJ(qinit ∈ R3, v⃗init ∈ R3, nctrl ∈
N1, dctrl > 0, σ2

deg ∈ [0, 360], t∆ > 0)
L← (qinit) ▷ Sequence of control points
T ← (0) ▷ Sequence of timestamps
qcur, v⃗cur ← qinit, v⃗init
for i ∈ {1, . . . , nctrl} do

Mrot ← ROTMATFROMUPTO(vcur)
v⃗ ←Mrot · SAMPLEDIRECTION(σ2

deg)

q ← qcur + dctrl · v⃗
∥v⃗∥

L← APPENDTOSEQUENCE(L, q)
T ← APPENDTOSEQUENCE(T, i · t∆)
qcur, v⃗cur ← q, v⃗

end for
σ(t)← MINIMUMSNAPPOLGEN(L, T ) ▷ Or with jerk
return σ(t)

end procedure

B. Random Trajectory Generation

To train a generalizing RL policy (see section VI), we
generate randomized trajectories during training. This al-
lows the agent to follow arbitrary trajectories during test-
ing, instead of overfitting to a fixed set of trajectories.
For this purpose, we adopt the previously defined mini-
mum snap/ jerk trajectory generation algorithm and feed it
with random target/ control waypoints q and uniform times-
tamps T . Algorithm 1 illustrates our algorithm in pseudo-
code, where GENTRAJ(qinit, v⃗init, nctrl, dctrl, σ

2
deg, t∆) is the

main procedure which generates a random trajectory and
SAMPLEDIRECTION(σ2

deg) samples a random direction from
a gaussian distribution with a standard deviation of σ2

deg ,
measured in degrees. The algorithm takes an initial position
qinit and an initial direction v⃗init. In each iteration, a random
direction is sampled by sampling a zenithal and an azimuthal
angle from a gaussian distribution with mean 0 and stan-
dard deviation σ2

deg , and an uniform distribution in [0, 2π],
respectively. The azimuthal angle measures the rotation around
the vertical (or up) axis, and the zenithal angle measures the
deviation from the vertical axis. The sampled direction then is
rotated to align with the current direction v⃗cur instead of the up
vector, normalised, scaled with dctrl, and added to the current
position qcur. We work with an uniform distance between
control points dctrl, and a uniform time difference t∆. With
this procedure, nctrl control points are sampled, which are then
fed into the minimum snap/ jerk optimization algorithm. For

https://github.com/ZJU-FAST-Lab/large_ scale_traj_optimizer


an example of a randomly generated output, see appendix A.

V. MODEL PREDICTIVE CONTROL

MPC uses mathematical optimization to control the state of
the drone. Given an initial state and a goal state, it uses a
dynamics model to predict its state based on chosen inputs.
This forward-looking capability allows for the derivation of the
optimal control inputs to achieve the optimal state minimizing
a user configured sum of distances, the objective function.
The model used for the prediction is the following system of
differential equations (specific values for Ix, Iy, Iz and m are
given in the Appendix) [12] [5]:

ẍ = (cosϕ · sin θ · cosψ + sinϕ · sinψ) · u1
m

ÿ = (cosϕ · sin θ · sinψ − sinϕ · cosψ) · u1
m

z̈ = (cosϕ · cos θ) · u1
m
− g

(6)

ϕ̈ = θ̇ψ̇

(
Iy − Iz
Ix

)
+
u2
Ix

θ̈ = ϕ̇ψ̇

(
Iz − Ix
Iy

)
+
u3
Iy

ψ̈ = θ̇ϕ̇

(
Ix − Iy
Iz

)
+
u4
Iz

(7)

with [17]

u1 = Fthrust = (M1 +M2 +M3 +M4)

u2 = τϕ = (M1 −M3) ∗ l
u3 = τθ = (M2 −M4) ∗ l
u4 = τψ = (−M1 +M2 −M3 +M4) ∗ C.

(8)

Defining x(t) as the the state of the drone x(t) =
[x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇]T and u(t) as the control inputs
with u(t) = [u1, u2, u3, u4]

T we get with eq. (6) and eq. (7)
[12]:

ẋ(t) = f(x(t), u(t)) (9)

which we discretize and integrate with the Runge-Kutta fourth-
order method to:

x(t+ 1) = F (x(t), u(t)). (10)

The objective function, aimed at minimizing to derive the
optimal control inputs, is JN . The optimization problem is
stated with the following constraints:

min
u

JN (x,u) =

N∑
k=0

(
∥x(k)− xref∥2Q + ∥u(k)− uref∥2R

)
s.t. x(k + 1) = F (x(k),u(k))

x(0) = x0

umin ≤ ui ≤ umax.
(11)

Stable and effective control results (Appendix subsection
G) were achieved in PyBullet simulation environment with

the CasADi framework [3] with the following constraints on
control inputs and weighting matrices Q and R inspired by
[12]:

0 ≤Fthrust ≤ 35

−1.257 ≤τϕ ≤ 1.257

−1.257 ≤τθ ≤ 1.257

−0.2145 ≤τψ ≤ 0.2145

(12)

Q = diag(1, 1, 1, 0.3, 0.3, 0.2, 0, 0, 0, 0, 0, 0)
R = diag(0.15, 0.15, 0.15, 0.4).

(13)

The weighting matrices proved to be the most effective
among a variety of ideas tested to improve performance
through the tuning of weighting matrices. Among these ideas
were the complete removal of constraints on the orientation
and the control inputs and the adaptive k-weighting matrices
approach. Details and variants of these approaches are detailed
in the appendix.

The resulting control inputs were converted to PWM input
signals sent to the drone in PyBullet using the mappings (Input
Command (PWM)→ Thrust) and (Thrust→ Torque) detailed
in the appendix and identified in this work [15]. For our
purposes, (Thrust → Torque) was inverted and approximated
to (Torque → Thrust):

fi = 1676.57185318 · τi (14)

and the quadratic mapping (Input Command (PWM) →
Thrust) was inverted to (Thrust → Input Command (PWM)):

pwmi =


−24236.9 + 1.57508× 10−11·√

1.89215× 1032fi + 2.26× 1030, fi ≥ 0,

−1× (−24236.9 + 1.57508× 10−11·√
1.89215× 1032(−fi) + 2.26× 1030), fi < 0.

(15)

A mapping (Torque → Input Command (PWM)) was then
created by concatenating (Torque → Thrust) and (Thrust →
Input Command (PWM)). This mapping was then used to map
the output of the CasADi MPC controller to the input of the
PyBullet simulation.

VI. REINFORCEMENT LEARNING

As the field of quadrotors advances, the requirements for
what constitutes a ’successful’ quadrotor are continually be-
ing increased. Current control methodologies, such as MPC,
have demonstrated proficiency in managing the dynamics
of these systems under various conditions. However, as the
environments become increasingly complex, marked by the
need to navigate cluttered or dynamically changing spaces,
these traditional control methods begin to face limitations.
Specifically, the challenge intensifies when there is a need
to process high-dimensional data and to exhibit high levels
of adaptability in real-time. This is where RL comes as a



−0.2
0.0

0.2
0.4

0.6
0.8

1.0
1.2

X axis −0.2
0.0

0.2
0.4

0.6
0.8

1.0
1.2

Y
ax

is

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Z
ax

is

Position RL

Position PID

Fig. 5: Simple position controller RL agent on a 4-waypoint
following task, compared against a position PID controller.

powerful tool to address these problems. Motivated by the
potential of RL in many areas of robotics and beyond, we
decided to adapt these methods for the problem of trajectory
following and quadrotor landing.

A. Position Controller

As we started working on a RL controller, we initially
focused on developing a controller able to minimize the drone
position relative to a target position using the PPO algorithm.
After some experiments, the best model was trained using
directly motor commands for controlling the drone. Observa-
tion space contained relative distance error, orientation, linear
and angular velocity, linear acceleration and the past 4 motor
commands. The controller was then trained by optimizing for
the following reward:

r(p, t) = max(0, 2− ||p− t||4) + 100{∥p−t∥≤r}, (16)

where p, t ∈ R3 are the drone position and the target position,
respectively, and r is a radius where we accept that the drone
reached a given target position. Figure 5 shows our obtained
policy.

B. Trajectory Follower

In the area of drone racing, Penicka et al. [25] tackle
the problem of trajectory following by introducing (among
other contributions) a more sophisticated reward shaping and a
richer observation space. Our implementation of reward shap-
ing closely follows the approach outlined in [25]. Similarly,
we adopt a similar observation space. In the following, we
present our modified approach:

1) Observation space: Our observations v ∈ R13+3n con-
sist of quadrotor position, roll, pitch, yaw, linear velocity,
angular velocity, projection from the drone to the closest
point on its trajectory and n vectors pointing from the drone
to subsequent n waypoints. Allowing the agent to perceive
its projection to the closest point on a trajectory allows
it in combination with a proper reward to learn to follow
trajectories more closely. Adding future waypoints, on the
other hand, allows it to prepare for the next point after reaching
the immediate one.

2) Action space: There are multiple possibilities for an
action space. One such candidate is to output 4 scalars (RPMs),
which are direct commands to motors. Kaufman et al. [16]
have shown that outputting motor level commands directly
is inferior to outputting attitude commands. These consist of
desired changes of bodyrates (yaw, pitch, roll) and a change
in a single constant RPM value that is sent to all four motors.

3) Reward shaping: The reward that is provided as a
training signal to an optimization algorithm composes of
multiple terms and can be expressed as:

r(t) = kprp(t) + ksrs(t) + kwprwp + rT , (17)

where rp(t) is a difference in travelled distance over trajectory
between current and previous timestep, rs(t) is a total travelled
distance over trajectory, rwp is a reward for entering a certain
radius of a waypoint (and is given only once per waypoint),
rT is a negative reward for crashing and kp, ks, kwp are
hyperparameters defining importance of these terms. For full
derivation of these terms we refer to [26]. Instead, as a
supplement, we provide a fig. 6 illustrating these terms. The
reward from eq. (17) produces a learning behavior by itself,
but the resulting agent has tendencies to search for shortcuts
in a trajectory, since it only maximizes for progressing over
it, not for faithfully following it. For this reason, authors
[25] introduce a scaling coefficient α = αdαvminαvmax that
constitutes of three multiplicands. This coefficient ensures that
the agent operates within a given velocity range [αvmin

, αvmax
]

and also follows trajectory within a desired distance ≤ αd.
Again, we refer to [25] for more details. The final expression
for reward signal is

r(t) = αkprp(t) + αksrs(t) + kwprwp + rT . (18)

4) Training: We train the model with random trajectories
generated using GENTRAJ from algorithm 1 with σ2

deg = 50,
qinit = (0, 0, 1)T , dctrl = 1.3, and nctrl = 10. Trajectories are
generated in open space, meaning that there are no obstacles
in the way. We use the PPO algorithm, with a learning rate of
0.0003 and train for 2.5M timesteps.

5) Experiments: One of the main difficulties of the RL
approach is to properly adjust hyperparameters, in our case
kp, ks, kwp as well as velocity ranges and desired distance
to a trajectory. The problem is that the rewards associated
with these coefficients are complementary and setting them
improperly leads to an undesired behavior. For example,
setting a large ks makes the agent focus mainly on getting to
the final waypoint as quickly possible, which results in large
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Fig. 6: Illustration of different components of the reward
signal. The grey quadrotor represents the agent at timestep
t− 1, the black quadrotor represents the agent at timestep t.

shortcuts. We ran a grid search over possible hyperparameters
in cloud, obtaining 60 trained models and analyzed results
quantitatively from plots. However, hyperparameters that we
search for directly influence scale of the reward and the
performance needs to be evaluated qualitatively, by looking
at the behavior of each trained agent. We found that the kp
(change in travelled distance) is the most important value to
set properly for overall performance. The reward for overall
travelled distance showed to be not useful. We want our agent
to be invariant w.r.t. the stage of trajectory it is in. In other
words, we want it to behave the same at the beginning and
the end of any trajectory. We think that the reward term rs
is useful for drone racing, where we want to incentivize an
agent to complete its trajectory quickly. In our case, setting
ks to a larger value causes the drone to cut trajectories in an
undesired fashion. We also found that not limiting maximum
velocity leads the agent to local optima where it randomly
goes into one direction very rapidly in order to obtain rewards
quickly before it crashes. This might be resolved by increasing
number of parallel agents. Our final agent has parameter values
kp = 5, ks = 0.05, kwp = 8, with maximum desired distance
from trajectory set to zero, and a desired velocity range from
0.2 to 1.5 m/s.

C. Evaluation

1) Test Set Generation: To evaluate our trajectory following
policy for a landing task, we generate a test set of 200 poly-
nomial trajectories with algorithm 1. The design motivation
behind this test set is to benchmark performance during a
landing operation. We choose nctrl = 3 and dctrl = 1.3m,
resulting in ≈ 5.2m landing trajectories. We fix the landing
position to be qland := (0, 0, 0)T . First, we set qinit :=
qland. To ensure that qland is the end position instead of
the start position, we reverse the sampled control points L.
In more particular, after sampling the control points L =
(qinit, q1, . . . , qnctrl

) in algorithm 1, we reverse the sequence
to L−1 = (qnctrl

, . . . , q1, qinit), and use L−1 instead of L,
i.e. we call MINIMUMSNAPPOLGEN(L−1, T ). To simulate
random angles during landing, we choose v⃗init as an arbitrary

Test Set Model Success Avg Dev (m) Max Dev (m) Time (s)

Landing PID-9 1.0 0.059 0.166 7.98
Landing RL-10 1.0 0.074 0.155 7.88
Landing PID-avg 0.89 0.069 0.212 8.22
Landing RL-avg 1.0 0.092 0.222 7.22

Long PID-23 1.0 0.089 0.228 27.02
Long RL-26 0.99 0.09 0.23 22.32
Long PID-avg 0.76 0.1 0.292 26.75
Long RL-avg 0.99 0.126 0.338 18.37

TABLE I: Comparison of our reinforcement learning (RL) pol-
icy against a position PID controller. Averages and comparable
runs are shown.

unit vector with z-direction > 0. With this procedure, we
randomly generated 200 trajectories.

2) Metrics: Four metrics are computed, the success rate
[Success], the mean deviation from the reference trajectory in
meters [Mean Dev (m)], the maximum deviation from the ref-
erence trajectory in meters [Max Dev (m)], and the completion
time until successful landing in seconds [Time (s)]. We define
[Success] as the state where the drone reached the landing
position qland within a distance of 0.2m and a low velocity
≤ 5/3 m/s (< 0.05 in the simulation). [Time (s)] is defined
as the time it took to reach qland from qnctrl

. [Mean Dev (m)]
and [Max Dev (m)] are computed by averaging and taking the
maximum of the minimum distances of every position visited
by the drone to the reference trajectory σland(t), respectively.
To compute the distance of a point to σland(t), we apply
discretization with 104 points and take the smallest distance
to the discretized points.

3) Results: To evaluate our results, we compare a position
PID controller baseline against our learned policy on the
landing task with short trajectories ≈ 5.2m and on long
trajectories ≈ 27.3m without landing. Figure 7a shows the
trajectory followed by the PID controller. Note that an un-
natural stop-and-go behavior can be observed, which can be
mainly attributed to poor usage of the PID controller. In more
particular, the PID controller is only given the next waypoint
once it reached one target. Nevertheless, by showing that our
learned policy improves upon this baseline, we validate our
learned policy. In fig. 7b, the smooth trajectory followed by
our learned RL policy can be seen. Interestingly, it learned to
move slower if the next waypoints in the waypoint buffer are
more close, which suggests that the drone learned to correlate
velocity with the distance to the next waypoints. Table II shows
the benchmarks of this experiment. Overall, the RL policy
shows faster completion times and on-par deviation from the
reference path compared to the position PID. Note that the
PID controller did not achieve 100% success rate for every
discretization level due to mis-configured discretization levels.
We refer to appendix D for a more detailed description.

VII. DISCUSSION AND FUTURE WORK

In the RL part of the project we got our hands on the
drone simulation environment (pybullet), integrated our flexi-
ble trajectory generation mechanism into a training pipeline,



−0.25
0.00

0.25
0.50

0.75
1.00

1.25
1.50

X axis −0.10
−0.05

0.00
0.05

0.10
0.15

0.20
0.25

0.30

Y
ax

is

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Z
ax

is

PID

Target waypoints

(a) PID.

−0.25
0.00

0.25
0.50

0.75
1.00

1.25
1.50

X axis −0.10
−0.05

0.00
0.05

0.10
0.15

0.20
0.25

0.30

Y
ax

is

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Z
ax

is

RL

Target waypoints

(b) RL.

Fig. 7: Trajectories are color-coded according to velocity. Blue corresponds to slow, whereas yellow corresponds to fast.

successfully implemented an influential paper from drone
racing [25] and managed to run our experiments in cloud,
which successfully fulfilled authors’ expectations from this
practical course. Our policy produces smooth and natural
control, as seen in fig. 7b. There are still multiple areas to
improve. For example, there is still a room for improvement
for making our policy follow the trajectory even more closely,
effectively passing every waypoint in a specified radius. Our
current policy does not have such feat. Another weakness is
that the agent is unable to follow trajectories that intersect
themselves. This is due to the fact, that during computation
of the closest point on the trajectory, we consider all line
segments of a given trajectory. We tried to resolve it by
computing projection only on the ’surrounding’ line segments,
but our definition of what ’surrounding segments’ are was
introducing problems in learning, leading to an undesired
behavior. At the time of writing this chapter, we think we
have a remedy for this issue, but the time budget that we have
left is not sufficient to apply it. We therefore leave this as a
potential for future work. Another area for future work would
be to make our logging and evaluation code more suitable for
large scale experiments and evaluation, as well as switching
to a more parallelization friendly simulator. For MPC, a real-
time capable implementation should be considered, especially
if future work aims at real-world hardware implementation.
The given CasADi Python MPC controller could be rewritten
in C++. Another approach would be the usage of the TinyMPC
code library (further details are delineated in the appendix).
A different idea to potentially improve the MPC controller
would be to use RL to find appropriate weighting matrices
and thresholds for control inputs.

VIII. CONCLUSION

In this project, we successfully implemented a ROS2 soft-
ware that works in a Webots simulation environment. For

the real-world application, we successfully implemented the
interfaces to the UAV, i.e. a working video and IMU data
stream, and sending control commands. The state estimation
was successfully implement using ORBSLAM3 and integrated
into our ROS2 software. Due to limitations of the setup,
i.e. unstable video stream and an improvised hardware setup,
the second half of the project focused on working in the
simulation. Due to limitations of Webots when used for
RL, we moved to the gym-pybullet-drones simulation
environment. There, we successfully implemented a MPC, and
trained a generalizable RL-based control policy that outputs
stable and smooth control. To train the RL policy, we leveraged
randomly generated feasible trajectories using minimum-snap
polynomial trajectory generation. We evaluate our trained
policy on two test sets, one for landing and one for long flight,
and show that our policy improves upon a baseline position
PID controller.
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Fig. 8: Random smooth trajectory generation using random
control point sampling and minimum snap trajectory genera-
tion. (a) shows the random control point sampling mechanism
where the blue cones visualise the standard deviation for
sampling from a gaussian distribution. (b) shows the smooth
trajectory generated using [31].

APPENDIX

A. Random Trajectory Generation Example

In section IV-B, we described the algorithm on how we
generate randomized trajectory for training our RL policy. In
fig. 8, a visual illustration of this algorithm can be found by
providing an example generated trajectory.

B. Differential Flatness

Differential flatness has been validated by [21] and, since
then, led to a series of follow-up works [6], [7], [10], [11].
Recall that the trajectory is now defined in the space of flat
outputs:

σ(t) : [t0, tm]→ R3 × SO(2) (19)

see eq. (2). To conclude the proof that modeling the trajectory
in the flat output space is sufficient for trajectory planning
of the underactuated drone, it only needs to be shown that
the full state of the system and the control commands sent
to the four motors of the drone can be written in terms of
σ(t). More spefically, the position, velocity, acceleration of
the drone, the orientation matrix from the bodyframe to the
world frame, the angular velocity and acceleration, and the
control motor commands need to be written in terms of σ(t).
That it is possible to write these variables in terms of σ(t) was
derived by [21], which builds the foundation of the literature
for polynomial trajectory generation. For the full derivation,
refer to [21].

C. Improving the Video Stream with Packet Injection

For improving the stability and latency of the video stream,
The approached solution based on open-source code5 involves
sending the video data via packet injection because it allows
for transmitting data as it is received via direct memory access
(DMA), thus omits overhead due to buffering and assembling
complete frames before transmission. The sent packets then
can be read via radio frequency monitor (RFMON) (also:
monitor mode). Since Ubuntu does not support RFMON, a
separate device captures the packets and forwards them to the
Ubuntu device via ethernet in an 1-to-1 mapping. While the
solution is conceptually sound, it requires a deep dive into
low-level communication primitives written in C and a detailed
understanding of the structure of the headers of WiFi packets
in the Data Link Layer (Layer 2), including nuanced details
such as the interpretation of radiotap headers. A deep dive
into the code revealed that this task is out of the scope of this
project.

D. Full Benchmarks

We compare a traditional position PID controller against
our learned policy. Since both control policies take time-
discrete waypoints as reference trajectory instead of a time-
continuous trajectory, we discretize σland(t) according to
different discretization levels [Discr.]. Observe that higher
[Discr.] makes both control algorithms result in a slower drone,
for different reasons. For the PID controller, higher [Discr.]
lets the drone visit and stop at more waypoints (stop-and-go).
Tables II and III shows the full benchmarks of this experiment.
The PID controller did not achieve 100% success rate for
every discretization level due to mis-configured discretization
levels. Too low discretization levels observably resulted in to
high distance between intermediate waypoints, which made
the drone go too fast due to a high proportional componant,

5https://github.com/jeanlemotan/esp32-cam-fpv

https://github.com/jeanlemotan/esp32-cam-fpv


Discr. Model Success Mean Dev (m) Max Dev (m) Time (s)

5 PID 0.63 0.103 0.372 6.94
6 PID 0.65 0.091 0.320 7.64
7 PID 0.98 0.072 0.228 7.59
8 PID 0.975 0.067 0.187 7.37
9 PID 1.0 0.059 0.166 7.98
10 PID 1.0 0.055 0.148 8.72
11 PID 0.995 0.053 0.138 9.45
12 PID 0.89 0.051 0.138 10.1

5 RL 1.0 0.141 0.402 5.64
6 RL 1.0 0.119 0.309 5.98
7 RL 1.0 0.104 0.250 6.48
8 RL 1.0 0.090 0.206 7.04
9 RL 1.0 0.082 0.178 7.31
10 RL 1.0 0.074 0.155 7.88
11 RL 1.0 0.069 0.144 8.41
12 RL 1.0 0.063 0.132 9.08

Avg. PID 0.89 0.069 0.212 8.22
Avg. RL 1.0 0.092 0.222 7.22

TABLE II: Performance of the trajectory following reinforce-
ment learning (RL) policy on our landing task test set with
200 trajectories. Comparison against a traditional position PID
controller.

Discr. Model Success Mean Dev (m) Max Dev (m) Time (s)

14 PID 0.37 0.125 0.487 25.66
17 PID 0.545 0.108 0.361 26.3
20 PID 0.9 0.095 0.275 26.72
23 PID 1.0 0.089 0.228 27.02
26 PID 1.0 0.083 0.209 28.04

14 RL 0.985 0.18 0.49 14.35
17 RL 0.99 0.14 0.39 16.29
20 RL 0.99 0.12 0.31 18.62
23 RL 0.995 0.10 0.27 20.26
26 RL 0.99 0.09 0.23 22.32

Avg. PID 0.76 0.1 0.292 26.75
Avg. RL 0.99 0.126 0.338 18.37

TABLE III: Performance of the trajectory following reinforce-
ment learning (RL) policy on our landing task test set with
200 trajectories. Comparison against a traditional position PID
controller.

resulting in a crash. For too high discretization level, we
observed that the drone overshot the target landing location.
Note that these issues can be mitigated by tuning the PID
parameters. The highlighted rows show a well-configured
setting and a fixed time or deviation budget.

E. PID Controller

We implemented a position PID controler built on top of an
attitude PID controler. In total there are 6 PID controllers, 3
corresponding to x,y and z position for the position PID, and
3 corresponding to roll, pitch and yaw for the attitude PID
controller. The x and y PIDs output a target pitch and roll,
used as input by the pitch and roll PIDs. All the parameters
of all the PIDs were manually tuned. The architecture of the
PID cascade architecture can be found in fig. 10.

Fig. 9: Diagram of the PIDs cascade architecture.

Fig. 10: Result of the PID controller to the target (0.0 -0.2
0.4) on the x, y and z axis. The robot position is estimated
using Orbslam.

F. System identification for Model Predictive Control

a) Inertia and mass of Crazyflie:

Ix = 0.0000166 kg ·m2

Iy = 0.0000167 kg ·m2

Iz = 0.00000293 kg ·m2

m = 29.0 g

(20)

[15]
b) Mappings:

(Input Command (PWM) → Thrust)

fi =2.130295 · 10−11 · pwm2
i

+ 1.032633 · 10−6 · pwmi + 5.484560 · 10−4 (21)

[15]
(Thrust → Torque)

τi = 0.005964552 · fi + 1.563383 · 10−5 (22)

[15]



G. MPC-tuning: Weight matrices Q and R

During implementation

Q = diag(1, 1, 1, 0.6, 0.6, 1, 0, 0, 0, 0, 0, 0)
R = diag(0.3, 0.3, 0.3, 0.8)

(23)

were weighting matrices adopted from [12]. The resulting
control was effective but visual inspection in the PyBullet
simulation revealed that it was a bit too rigid and slow.

Thus the following weighting matrix configurations were
considered, which were supposed to loosen up constraints on
the orientation and the control inputs:

Q = diag(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
R = diag(0, 0, 0, 0)

(24)

Q = diag(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
R = diag(0.3, 0.3, 0.3, 0.8)

(25)

Both configurations led to an unstable flying behavior. We
conclude that the term ∥u(k) − uref∥2R and the weights on
the orientation have thus a necessary stabilizing control effect
on the drone.

Furthermore, an adaptive k-weighting matrices approach
was tested:

Qk =
k

Nhoriz
·Q,

Rk =
k

Nhoriz
·R

(26)

where k ∈ {0, 1, 2, ..., Nhoriz − 1}.
The idea was to gradually apply the weighting the further

the state is in the prediction horizon and have more freedom
of action in the beginning. Multiple variants of this idea were
also tested such as the following:

Qk =

(
1− k

Nhoriz

)
·Q,

Rk =

(
1− k

Nhoriz

)
·R,

(27)

where k ∈ {0, 1, 2, ..., Nhoriz − 1} is the incremented variable.
The approach here was to gradually discount the weighting the
further the state is in the prediction horizon. The observed re-
sults were mixed. While the approaches occasionally enhanced
performance on certain tracks, it also occasionally led to less
precise control, causing the drone to deviate from its intended
trajectory. Further exploration and testing is necessary to fully
realize the potential of this concept.

More details can be found in the commit messages detailing
every test result of various weight matrix configurations6

In the end, the best performing weighting matrix configu-
ration is:

Q = diag(1, 1, 1, 0.3, 0.3, 0.2, 0, 0, 0, 0, 0, 0)
R = diag(0.15, 0.15, 0.15, 0.4)

(28)

6https://github.com/danielbinschmid/RL-pybullets-cf/compare/main...test
suite MPC

PID MPC

Success Rate 95% 100%
Avg Deviation (cm) 6.64 9.995
Avg Max Deviation (cm) 18.06 23.87
Average time (s) 4.54 4.12
Simulation Speed 0.4x 0.04x (CasADi Python)

TABLE IV: Performance of PID vs. MPC in test suite of 20
tracks in PyBullet.

H. Comparison between PID vs. MPC

A comparison between the PID controller and the MPC
controller with the above weighting matrices was conducted.
During testing a unresolved bug was discovered: For some
reason the drone took off erratically shortly before the origin
position of the test trajectory (0, 0, 0)T if certain if statements
for trajectory waypoint switching and trajectory termination
were set. The if statements were a close distance condition
and a velocity condition for the termination, where the norm
of the drone’s velocity had to be less than 0.05.
A remedy to this problem was found: The trajectory way-
point switched to the next if the distance of the drone to
the current waypoint was only below 20 cm without the
velocity constraint. The trajectory test also terminated with
the same condition. With this trajectory termination condition
the results in Table IV have to be interpreted as an evaluation
of general trajectory following without a landing or stopping
procedure. Especially, the measured ”Average time (s)” have
to interpreted as the time taken to reach within 20 cm of the
last position. This remedy was chosen due to time reason.

I. TinyMPC

TinyMPC is a real-time capable MPC solver with a low
memory usage well matched for micro-controllers typically
used on the Crazyflie. [1] Their approach leverages the struc-
ture of the discrete Riccati equation of the MPC problem for
efficiency and is based on the alternating direction method of
multipliers (ADMM). [1]

A C++ TinyMPC ROS2 node using the Webots simulator
was implemented7 during this project and was considered as
a solution until bugs were observed. The major bug was a
negative yaw spinning behavior and the minor bug was that
a slight perturbation in values of the initial state, led to - if
the initial state was a zero vector - a completely different
outcome. It is unclear where the root of these bugs come
from. The maintainers were contacted on GitHub8, but the
problem remains unsolved. A contact was given by one of
the maintainers, stating that a person they knew, implemented
TinyMPC successfully in PyBullet. After a private E-mail
conversation, we found out that the implementation did not
work (drone just flies away)9. Further inquiries did not receive
a response at the time of writing this report.

7https://github.com/AlboAlby00/CrazyflieControllers/tree/TinyMPC
8https://github.com/orgs/TinyMPC/discussions/14
9https://github.com/ucb-bar/Accelerated-TinyMPC/blob/extended

functionality/python wrapper for tracking.py

https://github.com/danielbinschmid/RL-pybullets-cf/compare/main...test_suite_MPC
https://github.com/danielbinschmid/RL-pybullets-cf/compare/main...test_suite_MPC
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